
PalmSource Confidential

Device Abstraction Layer
(DAL) Customization
Guide

Palm OS® 5 PDK/SPK

PalmSource Confidential

Written by Anna Schaller, Jenny Green, and Mark Dugger
Engineering contributions by Clif Liu, Ken Krugler, Vivek Magotra, and Steve Lemke.

Copyright © 1996-2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and you
may not modify this technical documentation or make any derivative work of it (such as a translation, localization,
transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION ANY
WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC.
ALSO EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR
TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, the PalmSource logo, BeOS, Graffiti, HandFAX, HandMAIL, HandPHONE, HandSTAMP, HandWEB,
HotSync, the HotSync logo, iMessenger, MultiMail, MyPalm, Palm, the Palm logo, the Palm trade dress, Palm
Computing, Palm OS, Palm Powered, PalmConnect, PalmGear, PalmGlove, PalmModem, Palm Pack, PalmPak,
PalmPix, PalmPower, PalmPrint, Palm.Net, Palm Reader, Palm Talk, Simply Palm and ThinAir are trademarks of
PalmSource, Inc. or its affiliates. All other product and brand names may be trademarks or registered trademarks of
their respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

DAL Customization Guide
Document Number 5044-004
January 27, 2004

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmsource.com

DAL Customization Guide iii
PalmSource Confidential

Table of Contents
 About This Document v

What this Guide Contains v
Related Documentation vi

General Documents vi
Technology-Specific Documents vii
Tool-Specific Documents viii

Additional Resources viii

1 Development Process 1
Tool Chain . . 2
Modifying the DAL Source. 3

Scatterload files . 3
Building <source>.prc 4

SmallDAL . . 4
BigDAL . . 5
Serial, USB, DMA, and SD Card Drivers 5

Building a ROM . 6
Installing the ROM into RAM 7
Debugging the ROM . 7

2 Configuring Memory 9
Memory Regions . 9
Virtual Memory Layout 11

Virtual Memory Map 11
HwrPreRAMInit() Responsibilities 15

New Page Tables. 16
Low Memory Globals 16

Scaling Heap Space . 17

3 DAL Globals 19
DAL Globals Data Structure 20
HAL Globals . 20

Setting Globals from the Card Header. 28
Identifying Hardware Features. 30

iv DAL Customization Guide
PalmSource Confidential

Blitter Globals . 32
Screen Manager Globals 33

4 Dynamic Input Area 35
Input Area Resources 35
Input Area Feature Flags. 36

5 Using the Control Bar 39
Control Bar Resources 39
Customizing the Control Bar 40

Editing the Bitmaps. 41
Adding Buttons . 42
Removing Buttons 44

6 Replacing System Fonts 45
Creating a Font Database 47
Replacing Fonts in the Locale Module 48

GenerateXRD . 48
PalmRC . 49

Creating a Hierarchical Font 50
Subfonts . 50
The Font Index Resource 51
Font Map Resources 53
How a Hierarchical Font Works 57

Creating Font Resources 59
Standard Font Resources 59
Extended Font Resources 63

 Index 69

DAL Customization Guide v
PalmSource Confidential

About This
Document
The DAL Customization Guide provides background, conceptual, and
how-to information on the Device Abstraction Layer of the ROM
image. This manual complements the API’s discussed in the DAL
Reference. It provides the common design and implementation
information that is needed to port the Palm OS® to a custom
hardware platform.

What this Guide Contains
This manual is contains the following chapters:

• Chapter 1, “Development Process,” describes the
development cycle for creating and testing a custom DAL.

• Chapter 2, “Configuring Memory,” describes the memory
map, with emphasis on regions memory is partitioned into.
Memory is configured in two passes; the first pass creates a
preliminary map, the second creates a final runtime map. The
events related to configuring the map during each of these
passes is discussed later in this chapter, under the section on
Virtual Memory Map.

• Chapter 3, “DAL Globals,” describes the globals supported
within the DAL, and where appropriate, which values need
to be customized.

• Chapter 4, “Dynamic Input Area,” describes how to
customize the dynamic input area available on some Palm
Powered™ handhelds.

• Chapter 5, “Using the Control Bar,” describes how to
customize the control bar available with some display ROMs.

• Chapter 6, “Replacing System Fonts,” describes how to
replace the Palm OS system fonts with your own.

Information related to specific technologies can be found in the
relevant technology manual.

About This Document
Related Documentation

vi DAL Customization Guide
PalmSource Confidential

Related Documentation
The documents in the following sections make up the Palm OS 5
PDK and SPK documentation set. The following manuals should be
used in conjunction with the DAL Customization Guide. Each one
provides information that correlates to information described in this
manual.

• General Documents

• Technology-Specific Documents

• Tool-Specific Documents

These documents can be found in the
Development Kit\Documentation directory on the Palm OS 5
PDK and Palm OS 5 SPK, unless otherwise noted.

General Documents

Document Description

Introduction to the PDK or

Introduction to the SPK

Guide that orients you to all the kits, tools, code, and
documentation on the PDK (Product Development
Kit) or SPK (Silicon Porting Kit).

Coding Recommendations This document contains a set of recommendations
that make the code you write easier for other
developers to maintain. It is not a set of coding
guidelines, but rather suggests ways of solving
common development problems.

Shared Library Design Guide This manual provides information on customizing
Palm OS using ARM-native code. Discussion
includes writing ARM shared libraries, integrating
ARM code with 68K applications, and creating
patches.

Architectural Overview The manual provides background and conceptual
information on the design of Palm OS 5. Information
related to specific technologies can be found in the
relevant technology manual.

About This Document
Related Documentation

DAL Customization Guide vii
PalmSource Confidential

Technology-Specific Documents

DAL Reference This manual is a companion to the DAL Customization
Guide. It describes the API routines in the Hardware
Abstraction Layer (HAL), the kernel Hardware
Abstraction Layer (kHAL), and the Kernel
Abstraction Layer (KAL) . These routines serve two
purposes. They are either modifed by you to
accomodate specific hardware features, or called to
accomplish a particular task.

Glossary of Terms This document contains the master glosssary of terms
used in the Palm OS 5 PDK/SPK documentation.

Document Description

Document Description

Display Driver Design Guide Technology guide on creating a hardware-specific
display driver that communicates with the screen
manager and the blitter routines.

Ethernet Interface Design Guide Technology guide to implementing an Ethernet
interface on the Palm OS. This document is
particularly relevant to those implementing wireless
Ethernet interfaces such as IEEE 802.11b.

Expansion Manager Solutions
Guide

Technology guide that provides you with
background information and instruction on
extending Palm OS to include expansion slot
technology. The information in this guide builds on
the Expansion Manager and VFS Manager chapters
in the Palm OS Programmer’s Companion and Palm OS
Programmer’s API Reference.

Serial Communications Driver
Design Guide

Technology guide on writing virtual communication
drivers. Supported drivers include serial as well as
USB.

Sound Driver Design Guide Technology guide to creating a hardware-specific
sound driver that communicates with the Sound
Manager.

About This Document
Additional Resources

viii DAL Customization Guide
PalmSource Confidential

Tool-Specific Documents

Additional Resources
• Documentation

PalmSource publishes its latest versions of documents for
Palm OS developers at

http://www.palmos.com/dev/support/docs/

Document Description

Building a ROM This guide begins by providing a description of the
various ROM components. It then describes the tools
and steps needed to integrate the DAL, the Palm OS®,
and the built-in applications into an image for
installation in flash ROM or in RAM.

Building Palm OS Application
Interfaces

This book describes a set of developer tools that you
can use to create, edit, process, and compile Palm OS
resources—forms, menus, text strings, and controls—
for Palm OS applications. The Palm resource tools
operate on an XRD file format rather than Macintosh
resource binary format (RSRC) format that was
previously used. GenerateXRD, PalmRC, and
PRCMerge are the tools are used in this process.

Data Integration Tools This manual describes three tools you can use to
manipulate Palm OS databases: DDEditor, which you
use to edit Palm OS database information; DDMerge,
which lets you merge new data into existing Palm OS
databases; and hOverlay, with which you can
generate base and overlay PRCs.

Debugging a ROM This manual provides conceptual, guidance, and
reference information for developers who want to

use Palm OS Debugger to debug Palm OS
applications and shared libraries.

Customizing Palm OS
Simulator

Guide to creating a custom version of the Palm OS
Simulator. This document is located in the
Development Kit\Tools\Simulator directory.

http://www.palmos.com/dev/support/docs/

About This Document
Additional Resources

DAL Customization Guide ix
PalmSource Confidential

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

About This Document
Additional Resources

x DAL Customization Guide
PalmSource Confidential

PalmSource FrameMaker Templates 1
PalmSource Confidential

1
Development
Process
The development process is a cycle of steps. Each cycle either adds
new functionality or further debugs modified code. The process can
be viewed as shown here. Note that some of the steps are performed
automatically by the Palm OS® 5.4 automated build system.

Modify Appropriate DAL Source

Build <source>.prc

Build ROM files

Install ROM into RAM

Test and Debug

Flash

Development Process
Tool Chain

2 PalmSource FrameMaker Templates
PalmSource Confidential

Tool Chain
The tools used in the development process, as well as the files
generated at each step, are shown in the diagram below. Note that
you can either build a ROM using the Palm OS 5.4 automated build
system which is based on Jam, or you can build a ROM using the
ROM Builder tool. For details on Jam and ROM Builder, see Building
a ROM.

It is beyond the scope of this chapter to describe these tools. This
diagram serves only to show the development cycle from a tools
perspective. Refer to Building a ROM for more information on these
tools.

Development Process
Modifying the DAL Source

PalmSource FrameMaker Templates 3
PalmSource Confidential

Modifying the DAL Source
The DAL is made up of three components: the HAL, the RAL, and
the kHAL. The modifiable components include only the HAL and
the kHAL.

Within the HAL, there are several components that can be modified
and rebuilt as follows:

• SmallDAL — Contains the bootstrap ROM and Debugger
Stub

• BigDAL — Contains the hardware access APIs used by Palm
OS®, as well as the kernel static library.

• Serial Driver — Contains the hardware access code to
support serial communication over an RS232 connection.

• USB Driver — Contains the hardware access code to support
USB communication over a USB port.

• DMA Driver

• MX1 SD Card Driver

Scatterload files
A limitation in CodeWarrior IDE prevents having more than one file
with the same name in a project. Since the scatter load files specify
the file name of the intermediate file containing the compiled object
code, and the OS build system uses the same file name for all entry
points into the built libraries, separate scatter load descriptions have
been created for each PRC. Each scatter load file is located in the
same directory as the Jamfile for the relevant PRC. For example, for
SmallDal.prc, the scatter load file (MX1_SmallDAL.txt) is
located in the same directory as the Jamfile for SmallDal.prc. The
scatter load file is a description file that tells the linker how to
organize the resulting compiled code in the .axf file.

Development Process
Building <source>.prc

4 PalmSource FrameMaker Templates
PalmSource Confidential

Building <source>.prc
The build process for the files differs slightly depending on what
kind of file you are modifying. The process, from source file to PRC
file, is built into the automated build system files (such as the
Jamfiles and Jamrules), and no intervention is required on your
part. Behind the scenes, however, there are several tools that
facilitate the build that you should be aware of. The <source>.prc
files are confined to the following files:

• SmallDAL.prc

• BigDAL.prc

• Serial.prc

• USB.prc

• DMALib.prc

• MX1MMC.prc

SmallDAL
The SmallDAL is the only component of the SmallROM. It contains
the bootstrap code.

Once you have modified your files for the SmallDAL, you can use
the Palm OS 5.4 automated build system, based on Jam, to initiate
the build. (For detailed information on Jam and the automated build
system, see Building a ROM.) Behind the scenes the following things
occur:

• .axf files are generated.

• Post-Linker batch file runs GrabElf tool.

– GrabElf decompiles .axf into separate generic .grc
files. It then renames .grc files to .bin files with a file
name that encodes its resource Type and ID.

• Post-Linker batch file runs PRCMerge tool.

– PRCMerge creates .prc files from the .bin resource
files.

Development Process
Building <source>.prc

PalmSource FrameMaker Templates 5
PalmSource Confidential

BigDAL
The BigDAL contains much of the same code that is in the
SmallDAL. The boot routines are repeated and re-run in the
BigDAL. In addition to running the boot code again, the BigDAL
also sets up the kernel and runtime environment, loads device
drivers, and transfers control to the system startup—PalmOS Main.

Once you have modified your files for the BigDAL, you can use Jam
to initiate the build. (For detailed information on Jam, see Building a
ROM.) Behind the scenes the following things occur:

• .axf files are generated.

• Post-Linker batch file runs GrabElf tool.

– GrabElf decompiles .axf into separate generic .grc
files. It then renames .grc files to .bin files with a file
name that encodes its resource Type and ID.

• Post-Linker batch file runs PRCMerge tool.

– PRCMerge creates .prc files from the .bin resource
files.

Serial, USB, DMA, and SD Card Drivers
Information on creating the Serial and USB drivers is discussed in
the Serial Communications Driver Design Guide.

Once the you have modified the files for your drivers, you can use
Jam to initiate the build. (For detailed information on Jam, see
Building a ROM.) Behind the scenes the following things occur:

• .axf files are generated.

• Post-Linker batch file runs GrabElf tool.

– GrabElf decompiles .axf into separate generic .grc
files. It then renames .grc files to .bin files with a file
name that encodes its resource Type and ID.

• Post-Linker batch file runs PalmRC tool.

– PalmRC compiles XML resource descriptions into .trc
guide file.

• Post-Linker batch file runs PRCMerge tool.

Development Process
Building a ROM

6 PalmSource FrameMaker Templates
PalmSource Confidential

– PRCMerge creates .prc files from the .trc guide file
and .bin resource files.

Building a ROM
Once you have the individual .prc file(s), the ROM images can be
created. There are two separate ROM’s in a Whole ROM, or
widebin, file. The widebin file includes the following components:

The ROM Builder tool can be used to create the widebin file, or you
can use the automated build system based on Jam. Refer to the
Building a ROM guide for detailed information. The process is
initiated Jam, or by a batch file called by ROM Builder. This process
is automated, and requires no intervention on your part. An
understanding of what goes on behind the scenes is provided for
information only.

• ROM Builder calls batch file, or you run Jam.

• Jam or batch file runs MakeCard tool

– MakeCard combines .prc files into .rom file (card
image).

widebin

SmallROM

BigROM

smallDAL.prc

bigDAL.prc

<system>.prc

<sharedlib>.prc

<PIMapps>.prc

Development Process
Debugging the ROM

PalmSource FrameMaker Templates 7
PalmSource Confidential

• Jam or batch file runs MakeROMs tool.

– MakeROMs combines .rom files into .widebin file
(Whole ROM).

NOTE: Keep in mind that there are multiple output format
options for use during both product development and
manufacturing. These options are straight binary and Motorola S-
Record.For proper tools support, all final ROM builds should have
a unique HAL ID, and an appropriate company ID. The values are
set in the sample batch files to PalmSource specific identifiers.
These batch files must be updated to reflect your values. These
values should be the same as those assigned to the
GHwrOEMHALID and GHwrOEMCompanyID globals during OS
boot. See the section “Setting Globals from the Card Header” in
Chapter 3, “DAL Globals,” for information on setting these globals.

Installing the ROM into RAM
Initial development will be focused on getting your SmallROM to a
state that boots the board. The SmallROM should be modified,
loaded into RAM, and tested from there. This cycle will be repeated
until you get a working version. Once your SmallROM boots the
board you should flash it so that you do not have to copy it into
RAM every time you want to test the BigROM or the WholeROM.

There are various tools that can be used to get the ROM files into
RAM. The ARM Developer Suite includes the AXD tool. Refer to the
Getting Started on ARM guide for instructions. Palm OS Debugger
can also be used. For instructions on loading to RAM, see Debugging
a ROM.

Debugging the ROM
For instructions on debugging, see Debugging a ROM.

Development Process
Debugging the ROM

8 PalmSource FrameMaker Templates
PalmSource Confidential

DAL Customization Guide 9
PalmSource Confidential

2
Configuring Memory
This chapter describes the memory map, with emphasis on regions
memory is partitioned into. Memory is configured in two passes;
the first pass creates a preliminary map, the second creates a final
runtime map. The events related to configuring the map during
each of these passes is discussed later in this chapter, under the
section on “Virtual Memory Map”.

Memory Regions
As discussed in the Architectural Overview, the Palm OS® memory
usage is based on different kinds of memory regions:

• Read-only region. There are two read-only regions. One
corresponds to the BigROM, one to the SmallROM.

• "Safe", hardware write-protectable, read-write region of
memory whose contents remain untouched between soft
resets and which is usually used to store databases

• Volatile read-write region whose contents will be wiped out
between soft resets. This is usually used for dynamic runtime
memory (stacks, variables, …)

The minimum size of each of these heaps is shown below:

The data types used to identify the regions of memory consist of a
map that specifies the number of regions, and an array of region
descriptors. A region descriptor defines the kind of the region, its

Memory Area Size

ROM : SmallROM 64K

ROM : BigROM 2 - 8Mbytes

Safe RAM (Storage Heap) 6 Mbytes

Volatile RAM (Dynamic Heap) 512 Kbytes

Configuring Memory
Memory Regions

10 DAL Customization Guide
PalmSource Confidential

base address, and its size. Note: "NonVolatile" RAM is the other
name of the "Safe" RAM.

The possible types are defined in HALMemory.h and are as follows:

enum HALMemoryTag { kROM, kVolatileRAM, kNonVolatileRAM,
kSmallROM } ;

typedef Enum8 HALMemoryType;

The region declaration is defined as follows:

typedef struct HALMemoryRegionTag{
 HALMemoryType type;
 void* baseAddress;
 UInt32 size;
} HALMemoryRegionType;

The global, GHALMemoryRegions, is initialized as an array of
HALMemoryRegionTypes. This structure contains the following
information:

This leads to the memory map declaration:

typedef struct HALMemoryMapTag{
 UInt8num Regions; // number of memory regions
 const HALMemoryRegionType* regions; // size is

// numMemoryRegions
} HALMemoryMapType;

The routine, HALMemoryGetMemoryMap(), returns this structure
to the calling routine. HALMemoryGetMemoryMap() is called

Type == kROM Denotes starting address and size
of the BigROM.

Type == kVolatileRAM Denotes the starting address and
size of the Dynamic Heap.

Type == kNonVolatileRAM Denotes the starting address and
size of the Storage Heap.

Type == kSmallROM Denotes the starting address and
size of the SmallROM.

Configuring Memory
Virtual Memory Layout

DAL Customization Guide 11
PalmSource Confidential

during the boot cycle to get a map of all available memory regions.
It is also called by the flash upgrade tool to locate the smallROM so
that the flash driver can be loaded and run from RAM. Refer to the
chapter on “Memory” in the DAL Reference for more information on
this function.

Virtual Memory Layout
The layout of virtual memory in the Palm OS 5 is crucial to having a
flexible RAM allocation for Palm Powered devices. The
initialization of the MMU page tables is heavily influenced by the
layout of the virtual address space. The layout of the virtual address
space influences the maximum supportable RAM configuration.
Finally, the ease with which the ROM itself can be relocated (for
instance between being located in Flash and being located in RAM
during development) is directly affected by the virtual memory
layout. To this end, the virtual address space is specified in this
section. Refer to the “Initialization” chapter in the DAL Reference for
details on the API’s described in this section.

The process by which the memory map is determined at runtime is
also specified in this section. During the boot process, there are
several places that need to coordinate the allocation of RAM and of
the virtual address space. This section specifies the various tasks
that must be performed and when those tasks should be performed
in a particular DAL.

Virtual Memory Map
The Virtual Memory Map defines how various portions of the
virtual address space should be laid out. The Memory Map is
intended to provide a reasonable amount of flexibility in the sizes of
RAM and Flash available to a Licensee while still permitting the
majority of the system to be independent of the actual sizes used.

The Virtual Memory Map consists of two main levels. The first is the
level that is set up at Reset time. The Reset_A assembler routine
performs the initial configuration. The mapping is then further
refined during HwrPreRAMInit() to form the final runtime Map.

Configuring Memory
Virtual Memory Layout

12 DAL Customization Guide
PalmSource Confidential

The Reset code is responsible for configuring the ARM MMU
layout. The virtual address space is initially defined at reset time.
The following table shows a sample set of start and end addresses.

Figure 2.1 Initial Memory Map

It is assumed that one half gigabyte for each of RAM and ROM areas
will suffice for any device running Palm OS 5. This may be an
invalid assumption in later products.

After the Reset has completed, the Memory Map is further refined
by HwrPreRAMInit() to the following RAM allocation.

Start Address End Address Description

0x00000000 0x1FFFFFFF RAM. This will be
refined later to
become the Dynamic
Heap and the
Storage Heap.

0x20000000 0x3FFFFFFF ROM. This may be
either a Masked
ROM or Flash.

0x40000000 0xFFFFFFFF Direct Mapped I/O.
This includes On-
Chip resources such
as Static RAM and
Hardware Registers.

ROM

RAM

Direct
Mapped
I/O

Configuring Memory
Virtual Memory Layout

DAL Customization Guide 13
PalmSource Confidential

Figure 2.2 Refined Memory Map

The following approximation on size, and sample start and end
addresses can be used as a guide.

Exception Table and low globals

Page Tables

Dynamic Heap

Storage Heap

Unassigned

DAL Globals

ROM

RAM

Direct
Mapped
I/O

Approx.
Size

Start Address End Address Description

16K 0x00000000 0x00003FFF Exception Vectors and Low
Memory Globals

~32K [
0x00004000 0x00007FFF MMU Level 1 Page Table

0x00008000 0x0001FFFF MMU Level 2 Page Tables

~512K
(minimum)

0x00100000 0x00100000+<A> Dynamic Heap *

~4.5 M 0x00200000 0x00200000+ Storage Heap *

~32 K

(minimum)

0x1FF00000 0x1FF00000+<C> DAL Static Allocation Region
(DAL Globals) *

Configuring Memory
Virtual Memory Layout

14 DAL Customization Guide
PalmSource Confidential

NOTE: All portions of the virtual address space that are not
being used should be marked inaccessible. Also note that there
must be a segment of inaccessible space immediately after the
DAL Static Allocation Region. This is a requirement of the runtime
environment, which exploits this space.

When configuring the memory mapping the following guidelines
should be put into practice.

• <letter> is the size of the region. The size of these regions may
end anywhere before the beginning of the next region. This is
especially critical in the space immediately after the DAL
Static Allocation Region.

• The table shows recommended starting addresses, however
the actual starting address is determined by each licensee
based on their hardware choice.

• The order of the regions must be kept as shown, however
other things can be mapped in the unused space between
these regions. For example, the reference DAL has a flash
part used by the Smart Media driver mapped at 0x10000000
between the top of the storage heap and the beginning of the
DAL Globals Region.

• The Dynamic Heap *, Storage Heap *, and DAL Static
Allocation Region * must be on a 1 MB boundary. ARM
architecture stipulates that there can only be one domain per
MB, with a total of 16 domains in the MMU.

• There is a minimum required space for the DAL Static
Allocation Region as determined by the DAL Globals
structure. As of this writing a minimum of 32 kilobytes set
aside for the DAL Static Allocation Region should be
sufficient.

The Direct Mapped I/O area of the memory map contains the
following layout.

Configuring Memory
Virtual Memory Layout

DAL Customization Guide 15
PalmSource Confidential

Figure 2.3 Direct Mapped I/O Configuration

* There are no constraints on where these are located. They can go anywhere
that makes sense.

HwrPreRAMInit() Responsibilities
The HwrPreRAMInit() function is responsible for configuring the
detailed layout of memory. The refined memory map shown above
(see Figure 2.2) is a good place to start. In order to establish this
memory map, the MMU configuration will need to be changed to
reflect the different protections of these various memory regions.

HwrPreRAMInit() uses PrvMapMemoryRegion() (see New Page
Tables below) to create the final memory map based on the actual
layout of the hardware and of the available RAM. The initial
memory map, set up by the Reset_A function, serves only to get to
the point where HwrPreRAMInit() can set up the final map.
Setting up this map requires changes to many of the descriptors in
the first-level table, and the creation of some second-level tables.

HwrPreRAMInit() needs to first determine the size of RAM. This
may be determined statically at compile time, or a more

Static RAM (48K)

Hardware Registers (8K)

Others
eg.USB Controller*

Others
eg.Video Controller*

ROM

RAM

Direct
Mapped
I/O

Configuring Memory
Virtual Memory Layout

16 DAL Customization Guide
PalmSource Confidential

sophisticated probe can be written that will determine the physical
size of RAM. Once this has been determined the amount of memory
to set aside for the three main RAM areas (DAL Static Allocation
region, Dynamic Heap and Storage Heap) must be determined, as
well as the associated starting addresses.

The first page of RAM contains the exception tables and locations to
store the RAM configuration information. This information is used
by HALGetMemoryMap() and other routines that need to know the
memory configuration, in order to ensure that they all agree on the
layout of memory.

Second-level page tables need to be constructed to reflect this
organization and the primary MMU page tables updated to reflect
these changes.

New Page Tables

The MMU Page tables consist of a base table, officially known in
ARM architecture as a "First-level table". This table contains entries
called "section descriptors". Each descriptor describes one megabyte
(1024 * 1024 bytes) of the virtual address space. A particular
descriptor may define that megabyte of the address space, or it may
reference a "Second-level table" that sub-divides the megabyte into
pages, each of which is separately mapped. Getting this right is a
painful process as the table is created manually. As a convenience
for DAL implementors an internal function,
PrvMapMemoryRegion(), is provided. This function provides a
single entry point that takes care of this by creating new second-
level page tables as necessary. This function is not exported from the
DAL and exists solely for the purpose of refining the MMU settings
in HwrPreRAMInit(). Refer to the “Initialization” chapter in the
DAL Reference for detailed information on this routine.

The sample DAL assumes small page tables but you can create
whatever kind of page tables make sense for you virtual memory
layout strategy.

Low Memory Globals

The following are internal globals used by HALGetMemoryMap().
These globals retain the address information needed for configuring
the MMU page tables during HwrPreRAMInit(). These globals are

Configuring Memory
Scaling Heap Space

DAL Customization Guide 17
PalmSource Confidential

defined in Hardware73xx.h and Hardware73xx_A.h and
initialized in HwrPreRamInit.c. Hardware73xx.h contains
data structures which define the beginning of memory, including
the exception vectors, and the low memory globals described below.
These globals fall immediately after the exception vectors in RAM
(see Figure 2.2). When creating your own Hardwarexxxx.h file
keep in mind that you must provide something equivalent.

For a complete list of DAL Globals refer to Chapter 3, “DAL
Globals.”

Scaling Heap Space
Licensees can control the size of the dynamic heap. The rule of
thumb is based on the screen size, which is the largest consumer of

pageTableP Points to the next second level page table
entry.

dynamicHeapBase The starting address of the dynamic
heap region.

dynamicHeapSize The size of the dynamic heap region.

romPhysicalBase The physical address of the ROM. Useful
for mapping the ROM address space
from RAM.

ramSize The total available RAM after removing
ROM space, if the ROM is in RAM.

storageHeapSize The size of the storage heap region.

flashDeviceBase The base address of the ROM image.
This will vary depending on which
ROM you are running — bigROM or
smallROM.

dbgGlobals Used by the SmallROM debugger for
flashing.

dbgLockout Set to indicate that a password has been
set on the device to prevent flashing
without a hard reset.

Configuring Memory
Scaling Heap Space

18 DAL Customization Guide
PalmSource Confidential

the dynamic heap. The following examples can be used in
determining the configuration.

The smallest RAM size required by Palm OS is 4MB. RAM size can
also not exceed 128MB. This includes storage and dynamic heap
space combined. For the most part, applications should not assume
that there is a lot of dynamic, or volatile, heap space available, other
than for screen buffering.

Resolution Screen Minimum
Heap Space

High Density

(1 screen buffer in memory)

320 X 320 X 16bits
= 204 Kbyte

1MB

Low Density

(1 screen buffer in memory)

160 X 160 X 16bits
= 51 Kbyte

512 kb
(default)

DAL Customization Guide 19
PalmSource Confidential

3
DAL Globals
There are three categories of globals supported by the Palm OS® –
application globals, system globals, and DAL Globals. Application
globals are defined and maintained by the application developer.
System globals are defined in the file Globals.h and reserved for use
by the Palm OS Managers. DAL Globals are defined in several files:

These variables are initialized and used when creating a custom
DAL.

Prior to Palm OS 5 the DAL Globals were implemented as Low
Memory Globals. They existed as a mapping of data structures onto
the end of memory. In Palm OS 5 true global variables are
supported. These variables become available once the runtime has
been initialized. The DAL Globals Region, or DAL Static Allocation
Region, in the Memory Map is where globals reside at runtime.
Refer to “Virtual Memory Map” in Chapter 2, “Configuring
Memory,” for information on the mapping. Note that there are still a
small number of Low Memory Globals that exist in low memory.

DALGlobals.h Defines container structure for DAL globals.
This structure includes the HAL globals,
blitter globals, screen manager globals, and
kernel globals. In addition, runtime mutex
identification and interrupt information is
tracked by this structure. Refer to the section
below on “DAL Globals Data Structure,”.

HALGlobals.h Defines HAL globals. Refer to the section
below on “HAL Globals,”.

HALDrawing.h Defines blitter globals. Refer to the section
below on “Blitter Globals”.

HALScreenMgr.h Defines screen manager globals. Refer to the
section below on “Screen Manager Globals”.

DAL Globals
DAL Globals Data Structure

20 DAL Customization Guide
PalmSource Confidential

For instance the globals that retain the address information needed
for configuring the MMU page tables during HwrPreRAMInit()
exist as Low Memory Globals.

DAL Globals Data Structure
The DAL Globals are stored in the structure
DALGlobalsTypeStruct.

typedef struct DALGlobalsTypeStruct {
struct BltGlobalsType *bltGlobals;// see HALDrawing.h
struct ScrGlobalsType *scrGlobals;// see HALScreenMgr.h
void **sysStaticBaseTable; // System Static Base Table
Int32 ralMutexID; // mutex ID used by runtime
struct HALGlobalsType *HALGlobals;// ptr to the old HAL

// globals
#if CPU_TYPE == CPU_ARM

struct KernelGlobals *krnGlobals;
struct InterruptInfoStruct **interruptInfo;

#endif
} DALGlobalsType, *DALGlobalsPtr;

External access to these globals is provided through the following
declaration.

#ifdef __cplusplus
extern "C"DALGlobalsTypegDALGlobals;

#else
externDALGlobalsTypegDALGlobals;

#endif

HAL Globals
Many of the HAL Globals are initialized in LBC_ROMHardware.c.
Several globals described below must be set by each licensee.

The HAL Globals are stored in the data structure
HALGlobalsTypeStruct. This structure is used in the definition
of the DALGlobalsTypeStruct. The fields of

DAL Globals
HAL Globals

DAL Customization Guide 21
PalmSource Confidential

HALGlobalsTypeStruct are mapped to the variables listed in the
table below.

Global Values Description

GSysKernelDataP void Pointer to kernel data.

GKernelTimerCallbackP void Kernel function to call every
system "tick" so kernel can
implement timeouts.

GPenGlobalsP Pointer initialized to
PenGlobalsType
typedef in
PenMgrxxxxPrv.h.

Pen manager globals.

GKeyGlobalsP Pointer initialized to
KeyGlobalsType
typedef in
KeyMgrxxxxPrv.h

Key manager globals.

GTimGlobalsP Pointer initialized to
TimGlobalsType
typedef in
TimPrv.h.

Time Manager globals.

GSndOffTime UInt32 Number of system time units
until disabling the sound.

GSysClockFreq UInt32 Processor clock frequency.

GHwrCPUDutyCycle UInt8 Desired Duty cycle of CPU in
31ths.

GHwrPenDown UInt8 where:
0 = up
<> 0 = down where
number is
milliseconds until
next sample

Indicates last state of pen-
down.

DAL Globals
HAL Globals

22 DAL Customization Guide
PalmSource Confidential

GHwrCurTime UInt32 Current hardware timer value
in milliseconds. Must be non-
zero at boot time to avoid
keyboard repeat problems.

GHwrTotalRAMSize UInt32 Total RAM Size.

GHwrDozeTime UInt32 Number of milliseconds dozed
since reset.

GHwrWakeUp UInt16 Bit mask of which peripherals
need to be enabled when
system wakes.

GSysAutoOffSeconds UInt16 Auto-sleep timeout in seconds.

GSysAutoOffEvtTime UInt32 GHwrCurTime of last event.
Used to support auto-off.

GSysTimerID typedef Int32
KernelID

ID of timer used for periodic
system checks, such as battery
level and auto-off. Internal use
only.

GSysLowMemChecksum UInt32 Checksum of exception vector
area of low memory. Used
when ROM built for full error
checking to make sure no
applications overwrite low
memory by using null pointers.

GHwrHardwareRev UInt16 Hardware rev. This is
determined during boot time.
The first shipping rev is 1.

GHwrMiscFlags UInt16 Miscellaneous hardware flags.
See the section below,
“Identifying Hardware
Features”, for information on
setting this global.

Global Values Description

DAL Globals
HAL Globals

DAL Customization Guide 23
PalmSource Confidential

GHwrMiscFlagsExt UInt32 More miscellaneous hardware
flags. See the section below,
“Identifying Hardware
Features”, for information on
setting this global.

GIrq1GlobalsP void IRQ1 handler globals.

GIrq2GlobalsP void IRQ2 handler globals.

GIrq3GlobalsP void IRQ3 handler globals.

GIrq6GlobalsP void IRQ6 handler globals

GSer681GlobalsP void Reflects value in
GIrq3GlobalsP global.

GSysInShutdown boolean If true, the system is in lockout.
Used for battery support.

GSysMinWakeupThreshold UInt8 System can wake up once
battery is over this voltage.

GHwrBatteryLevel UInt8 Current battery level.

GSysBatteryDataP void Pointer to current battery data.

GSysBatteryValidKindsP void Pointer to list of valid batteries.

GSysBatteryKind UInt8 where:
0 = Alkaline
1 = Nickle cad
2 = Lithium Ion
3 = Rechargeable
Alkaline
4 = Nickle MH
5 = Lithium Ion
1400
0xFF = Other

SysBatteryKind enumerated
type.

GHwrBatteryGlobalsP void Used to hold battery charging
state, etc.

GHwrBatteryPercent UInt8 Reflects battery percent.

Global Values Description

DAL Globals
HAL Globals

24 DAL Customization Guide
PalmSource Confidential

GSysBatteryCheckPeriod Int16 Reflects the frequency at which
the battery is checked.

GSysNextBatteryAlertTimer Int32 Number of milliseconds until
next battery warning. NOTE:
this global is obsolete.

GSysBatteryCheckTimer Int32 Number of milliseconds left
before we check battery again.

GSysBatteryWarnThreshold UInt8 If battery below this level, post
low battery keyboard event.

GSysBatteryMinThreshold UInt8 System will shut down if
battery falls below this number.

GHwrStepsPerVolt UInt16 Used to measure battery
scaling for 3.x volt batteries.

GUart328GlobalsP void For the Serial Manager in Palm
OS 3.2 and beyond, the 328
serial plugin needs its own
global space since there is no
global for the IRQ4 line.

GSysDayCounter UInt16 Software day counter for the
time-based critical warnings.

GHALMemoryRegions HALMemoryRegions[]
where:
0 = kROM
1 = kVolatileRAM
2 = kNonVolatileRAM
3 = kSmallROM

Global array used to store the
base address and size of the
four kinds of memory regions
— ROM, Storage Heap,
Dynamic Heap, and
SmallROM. This global is
initialized in
HALStaticMemInit() in
LBC_ROMHardware.c. For
more information see Chapter
2, “Configuring Memory,” in
this manual, as well as the

Global Values Description

DAL Globals
HAL Globals

DAL Customization Guide 25
PalmSource Confidential

chapter on “Memory” in the
DAL Reference.

GHALMemoryMap HALMemoryMapType Used to hold the
GHALMemoryRegions global,
as well as the array index for
this global. For more
information refer to the chapter
on “Memory” in the DAL
Reference.

GHALHardResetRequest boolean Indicates whether a hard reset
was requested by last call to
HALReset().

GSmallROMChecksum UInt16 Global used to identify which
SmallROM booted the OS.

GHwrOEMCompanyID IDs must be four
ASCII characters
long. Generally,
alphanumerics are
chosen, but this is not
a requirement. For
viewability,
characters are limited
to ASCII 33-127
(decimal). IDs
consisting of all
lowercase letters are
reserved for use by
PalmSource, Inc.

The value of this global is
assigned by PalmSource
Partner Engineering. This value
is embedded in the ROM by
each licensee, and stored in two
places. In addition to the global
described here, this value is
stored in the Card Header of
the ROM. The Card Header
value is obtained from the Card
ID field, which you enter before
running ROM Builder. The
global is set in
LBC_ROMHardware.c and
initialized during the boot
cycle.

When modifying the DAL and
rebuilding the ROM, make sure
that these two values are the

Global Values Description

DAL Globals
HAL Globals

26 DAL Customization Guide
PalmSource Confidential

NOTE: The company ID 'palm' is reserved for
PalmSource, Inc., the maker of Palm OS while,
'Palm' is assigned to Palm, Inc., a maker of
devices that run Palm OS.

same. It is suggested that you
retrieve the value from the
Card Header rather than
hardcoding the value into the
source. See the section below,

“Setting Globals from the Card
Header”, for implementation
details.

GHwrOEMDeviceID IDs must be four
ASCII characters
long. Generally,
alphanumerics are
chosen, but this is
not a requirement.
For viewability,
characters are
limited to ASCII
33-127 (decimal).
IDs consisting of
all lowercase
letters are
reserved for use by
PalmSource, Inc.

This value must be set by each
by each licensee. This value
need only be unique within all
devices made by a particular
manufacturer with the same
DAL — that is, one having the
same HAL ID and company ID.

It is the responsibility of the
DAL to distinguish between
the different devices that it
supports. It is the licensees
responsibility to set the correct
(unique) device ID in
GHwrOEMDeviceID.

Global Values Description

DAL Globals
HAL Globals

DAL Customization Guide 27
PalmSource Confidential

GHwrOEMHALID IDs must be four
ASCII characters
long. Generally,
alphanumerics are
chosen, but this is
not a requirement.
For viewability,
characters are
limited to ASCII
33-127 (decimal).
IDs consisting of
all lowercase
letters are
reserved for use by
PalmSource, Inc.

This value must be set by each
by each licensee. This value
should be unique per DAL,
within your company id.

This value is embedded in the
ROM by each licensee, and
stored in two places. In
addition to the global described
here, this value is stored in the
Card Header of the ROM. The
Card Header value is obtained
from the HAL ID field, which
you enter before running ROM
Builder. The global is set in

LBC_ROMHardware.c and
initialized during the boot
cycle.

When modifying the DAL and
rebuilding the ROM, make sure
that these two values are the
same. It is suggested that you
retrieve the value from the
Card Header rather than
hardcoding the value into the
source. See the section
below,“Setting Globals from
the Card Header”, for
implementation details.

Global Values Description

DAL Globals
HAL Globals

28 DAL Customization Guide
PalmSource Confidential

Setting Globals from the Card Header
During the boot process licensees have the opportunity to identify
the features of the hardware. They first have to identify the
hardware before they can identify the features of the hardware. To
identify the hardware, there are three globals available — Company
ID, HAL ID, and Device ID. Setting these globals is described here.

GSysDispatchTableRev UInt8 Incremented every time a trap
is patched. Used by host
debugger to invalidate it's
cache. Note that this table can
grow with every new version.
If it does, the value of
HAL_GLOBALS_REGION_SIZE
will need to grow as well, in
order to have enough static
memory to allocate some initial
stacks.

GDispExpSrcP UInt16 Blitter buffer.

GDispRowPatBufP UInt16 Blitter buffer.

GDispScanLine1 UInt16 Blitter buffer.

GDispScanLine2 UInt16 Blitter buffer.

GHALFreeStaticMemP UInt8 The memory immediately after
the HALGlobalsType and
before the end of
HAL_GLOBALS_REGION_SIZE
is used to allocate static
memory of various hardware
managers. This is a pointer to
the end of the free region.

GInitStage UInt32 Indicates where the system is in
the boot process. Modified by
HALSetInitStage().

Global Values Description

DAL Globals
HAL Globals

DAL Customization Guide 29
PalmSource Confidential

The sample code below demonstrates an approved method of
finding the BigROM, then subsequently calculating the card header
address, verifying it really is what we think it is, and updating the
Company/HAL/Device ID globals accordingly. The search loop is
necessary because there are four basic memory regions (BigROM,
dynamic heap, storage heap, and SmallROM) with no guarantee as
to the order of each region in the map.

NOTE: In future releases there may be more than one kROM
region. If this happens the code below may need to be re-written,
as you may be accessing the wrong card header. In Palm OS 5 it
is safe to assume the kROM region will always refer to the
BigROM.

The routine below should be added to the routine
HwrPreDebugInit() in LBC_ROMHardware.c. It is intended to
be executed after the device's memory map is set up so that
HALMemoryGetMemoryMap() can safely be used to find the
BigROM. Simply replace the three lines that set the DAL globals
with a call to this routine.

#ifndef BUILD_OPTION_SMALL_ROM
static void PrvInitializeDeviceIDs (void);

static void PrvInitializeDeviceIDs (void)
{
 HALMemoryMapType * memoryMapP = HALMemoryGetMemoryMap();
 HALMemoryRegionType * romRegionP;
 CardHeaderPtr cardP;
 UInt32 i;

 for (i = 0; i < memoryMapP->numRegions; i++)
 {
 if (memoryMapP->regions[i].type == kROM)
 {
 romRegionP = &memoryMapP->regions[i];

 if (romRegionP)
 {
 cardP = (CardHeaderPtr)(romRegionP->baseAddress);

 if (cardP && (cardP->signature == sysCardSignature))

DAL Globals
HAL Globals

30 DAL Customization Guide
PalmSource Confidential

 {
 GHwrOEMCompanyID = cardP->companyID;
 GHwrOEMHALID = cardP->halID;
 GHwrOEMDeviceID = hwrOEMDeviceIDUnspecified; // CUSTOMIZE THIS
 return;
 }
 }
 }
 }

 GHwrOEMCompanyID = hwrOEMCompanyIDPalmPlatform;
 GHwrOEMHALID = hwrOEMHALIDUnspecified;
 GHwrOEMDeviceID = hwrOEMDeviceIDUnspecified;
}
#endif

In layman’s terms, here is what’s going on.

• When booting the BigROM (but not the SmallROM), using
the HAL memory regions map, find the address of the
BigROM.

• If we found the BigROM, grab the Company and HAL IDs
from the BigROM header.

• If anything goes wrong, give the IDs benign default values.

For detailed information on the card header layout, refer to the
description on ROM Image Format in the “About Palm OS ROM
Images” chapter of the Building a ROM manual.

Identifying Hardware Features
Once the hardware is identified, two other globals are available to
tell the OS what features are present. These globals,
GHwrMiscFlags and GHwrMiscFlagExt, are set with bits masks.
The bit masks for these globals are defined in HwrMiscFlags.h.
The globals themselves are initialized in the routine
HwrIdentifyFeatures() in ROMHiHardwareXXXX.c.

DAL Globals
HAL Globals

DAL Customization Guide 31
PalmSource Confidential

GHwrMiscFlags Bit Masks

GHwrMiscFlagsExt Bit Masks

hwrMiscFlagHasBacklight Bit to set if backlight is present.

hwrMiscFlagHasMbdIrDA Bit to set if IrDA is present on the
main board.

hwrMiscFlagHasCardIrDA Bit to set if IrDA is present on the
memory card.

hwrMiscFlagHasBurrBrown Not applicable. Do not use.

hwrMiscFlagHasJerryHW Not applicable. Do not use.

hwrMiscFlagNoRTCBug Not applicable. Do not use.

hwrMiscFlagHas3vRef Not applicable. Do not use.

hwrMiscFlagHasAntennaSw Not applicable. Do not use.

hwrMiscFlagHasCradleDetect Bit to set if there is an A/D
converter on the HotSync port
used for identifying the attached
device.

hwrMiscFlagHasSWContrast Bit to set if the UI should support
software contrast.

hwrMiscFlagInvertLCDForBL Bit to set if there is a need to invert
LCD with backlight.

hwrMiscFlagHasMiscFlagExt Bit to set if using
GHwrMiscFlagsExt global.

hwrMiscFlagExtSubIDMask Bit to set for subtype ID Mask.
‘AND’ this bit to
GHwrMiscFlagsExt after setting
all other bits.

hwrMiscFlagExtHasLiIon Bit to set if there is a Lithium Ion
battery that is rechargable in the
cradle.

hwrMiscFlagExtHasRailIO Not applicable. Do not use.

DAL Globals
Blitter Globals

32 DAL Customization Guide
PalmSource Confidential

Blitter Globals
The blitter globals are stored in the structure BltGlobalsType.
This structure is a field in the DALGlobalsTypeStruct. It is
accessed through the variable GBltGlobals. The routine
HALDrawInit() initializes the blitter globals.

typedef struct BltGlobalsType {
UInt32 userColorMask;
void * BitonalBlitCopyFuncs[5];
void * BitonalBlitOverFuncs[5];
UInt8 translateSpace[256]; // used as temp translation table & for

// winPaintInverse translation
UInt16 translate16Space[256]; // maps indexed pixels into 16-bit pixels

// for 16-bit output

BltBitmapType canvasBitmap;

ExpandedPatternInfo patInfoStorage;
} BltGlobalsType;

#define GBltGlobals(*(BltGlobalsType*)DALGlobalsP->bltGlobals)

hwrMiscFlagExtHasFlash Bit to set if there is Flash ROM.

hwrMiscFlagExtHasFParms Bit to set if there is a Flash
parameters area.

hwrMiscFlagExt115KIrOK Bit to set if the device supports
115K IR transfers.

hwrMiscFlagExtHasExtLCD Not applicable. Do not use.

hwrMiscFlagExtHasSWBright Bit to set if the device has software
controlled brightness.

hwrMiscFlagExtNeedsLpr Not applicable. Do not use.

DAL Globals
Screen Manager Globals

DAL Customization Guide 33
PalmSource Confidential

Screen Manager Globals
The screen manager globals are stored in the structure
ScrGlobalsType. This structure is a field in the
DALGlobalsTypeStruct. It is accessed through the variable
GScrGlobals.

// Screen Manager globals
typedef struct ScrGlobalsType
 {

// The fields in this section mirror the bitmap and auxiliary structures
// (color table, directInfo structure used by 16 bit bitmaps, and the
// pointer to the bitmap data). The runtime screen data structures probably
// do not map to these fields, since the fields correspond to structures
// used by a 16 bit screen. A 4 bit screen, for example, will only have
// 16 color table entries, and will not have a directInfo structure. When
// the screen depth changes, baseAddr is repositioned according to the size
// of the color table and whether the directInfo structure exists.

BitmapType bitmap; // a pointer to this field is stored in the
// bitmapP field of onscreen windows

ColorTableType colorTable; // bitmap color table
RGBColorType colorEntries[256];
BitmapDirectInfoType directInfo; // used in direct color

MemPtr baseAddr; // Following the bitmap (flags indirect)
// is the address (part of bitmapType)

 MemPtr lockedAddr; // screen buffer used by HALScreenLock
ScreenTransferFunc screenTransferFuncP;
MemPtr screenBuf; // hardware screen buffer
MemPtr transferBuf; // intermediate buffer used by

// HALScreenSendUpdateArea

AbsRectType updateR; // update rect for HALScreenSendUpdateArea
 UInt32 lastUpdate; // Tickcount of last update

// Color translation tables. These map pixels values from other depths
// with standard system cluts into a pixel value for the screen's current
// depth and clut. They get updated by WinPallete() when it is called to
// update the palette on the screen's bitmap.

UInt16* colorTranslateP[4]; // 4 color translate table to current palette

DAL Globals
Screen Manager Globals

34 DAL Customization Guide
PalmSource Confidential

// [0] for 1 bit depth to current,
// [1] for 2 bits etc...

UInt16 screenLockCount; // number of times HALScreenLock called
Boolean doDrawNotify; // call HALScreenDrawNotify after drawing
ScrPaletteState paletteState8Bit; // state of the screen bitmap's palette

 }
ScrGlobalsType

DAL Customization Guide 35
PalmSource Confidential

4
Dynamic Input Area
This section describes how to customize the dynamic input area
available on some Palm Powered™ handhelds. A dynamic input
area is a software implementation of the input area that is
traditionally silkscreened onto the device. Implementing the area as
software allows the user to expand and collapse the area at will,
giving more space to the display of application data when it is
needed.

A control bar at the bottom of the screen contains various buttons,
including one, called the trigger, that opens the input area when it is
closed. A trigger also typically appears in the input area to provide a
way for the user to close the input area. See Chapter 5, “Using the
Control Bar,” for more information.

The control bar is typically closed when the input area is open,
except on double density screens, when it is always shown;
however, licensees can change this behavior by using alternative
input area and control bar bitmaps.

Input Area Resources
The dynamic input area use bitmaps and related 'silk' resources that
are stored in the HAL. The 'silk' resource is generated from an XRD
file that contains the following definitions:

• application area dimensions, alphabetic and numeric input
areas, soft buttons, and a virtual keystroke associated with
each soft button for five different states:

– input area open, without trigger

– input area open, with trigger soft button

– control bar open, with trigger (input area closed)

– control bar open, without trigger (input area closed)

– full screen application area (input area and control bar
both closed)

Dynamic Input Area
Input Area Feature Flags

36 DAL Customization Guide
PalmSource Confidential

• bitmap family definitions for the input area and control bar
bitmaps

The XRD file and the bitmaps are stored in the DAL’s DevResources
component. The directory contains the input area bitmaps listed in
Table 4.1. The resource ID constants for the bitmaps are defined in
HALScreenMgr.h.

The OS reads the bitmap resources and sends them to the display
driver when booting, and whenever the input area or control bar
bitmap changes in response to the opening or closing of the input
area, or a changed state of the input area trigger.

Input Area Feature Flags
The HAL is responsible for defining the dynamic input area feature
flags returned by the sysFtrNumInputAreaFlags selector of
FtrGet. These flags identify what input area features the device
supports; they are defined in Graffiti.h:

#define grfFtrInputAreaFlagDynamic 0x00000001
#define grfFtrInputAreaFlagLiveInk 0x00000002
#define grfFtrInputAreaFlagCollapsible 0x00000004

The flags must be defined using FtrSet in HALSetInitStage
when the uiValue argument is kWinMgrOKStage.

Table 4.1 Input area bitmaps

Bitmap Description Resource ID Constant

Input area with no trigger inputAreaBitmap

Input area with no trigger, selected
mode

inputAreaSelectedBitmap

Input area with trigger inputAreaBitmapTrigger

Input area with trigger, selected
mode

inputAreaSelectedBitmapTrigger

Dynamic Input Area
Input Area Feature Flags

DAL Customization Guide 37
PalmSource Confidential

For example, if the device supports a dynamic input area, live ink,
and a closable (collapsible) input area, the following logic should be
added to HALSetInitStage:

if (uiValue == kWinMgrOKStage)

{
Err err;
RectangleType bounds;

// check to see if display driver supports dynamic input area
err = HALDisplayGetAttributes(kHALDispInputAreaLoc, (UInt32*) &bounds);
if (err == errNone)
{
// if dynamic input area supported, set all of the input area flags
FtrSet(sysFtrCreator, sysFtrNumInputAreaFlags, grfFtrInputAreaFlagDynamic |

grfFtrInputAreaFlagLiveInk | grfFtrInputAreaFlagCollapsible);
}

}

Dynamic Input Area
Input Area Feature Flags

38 DAL Customization Guide
PalmSource Confidential

DAL Customization Guide 39
PalmSource Confidential

5
Using the Control
Bar
This section describes how to customize the control bar available on
some Palm Powered™ handhelds. A control bar is displayed across
the bottom of the screen, below the input area. It is used to hold
shortcut icons to specific applications. Unlike a status bar, a control
bar does not contain icons to applications that monitor state.
Control bar icons offer an alternative to starting an application
through the launcher.

The control bar contains various buttons, including one, called the
trigger, that opens the input area when it is closed. A trigger also
typically appears in the input area to provide a way for the user to
close the input area. See Chapter 4, “Dynamic Input Area,” for more
information.

The control bar is typically closed when the input area is open,
except on double density screens, when it is always shown;
however, licensees can change this behavior by using alternative
input area and control bar bitmaps.

Control Bar Resources
As with the dynamic input area, the control bar uses bitmaps and
related 'silk' resources that are stored in the HAL. The 'silk' resource
is generated from an XRD file that contains the following
definitions:

• application area dimensions, alphabetic and numeric input
areas, soft buttons, and a virtual keystroke associated with
each soft button for five different states:

– input area open, without trigger

– input area open, with trigger soft button

– control bar open, with trigger (input area closed)

Using the Control Bar
Customizing the Control Bar

40 DAL Customization Guide
PalmSource Confidential

– control bar open, without trigger (input area closed)

– full screen application area (input area and control bar
both closed)

• bitmap family definitions for the input area and control bar
bitmaps

The XRD file and the bitmaps are stored in the DAL’s DevResources
component. The directory contains the control bar bitmaps listed in
Table 5.1. The resource ID constants for the bitmaps are defined in
HALScreenMgr.h.

The OS reads the bitmap resources and sends them to the display
driver when booting, and whenever the input area or control bar
bitmap changes in response to the opening or closing of the input
area, or a changed state of the input area trigger.

Customizing the Control Bar
The control bar can be customized to display additional buttons.
You can also remove buttons, such the Bluetooth, if this feature is
not part of your offering.

Table 5.1 Control bar bitmaps

Bitmap Description Resource ID Constant

Control bar with trigger controlBarBitmap

Control bar with trigger, selected
mode

controlBarSelectedBitmap

Control bar with no trigger controlBarNoTriggerBitmap

Control bar with no trigger,
selected mode

controlBarNoTriggerSelectedBitmap

Using the Control Bar
Customizing the Control Bar

DAL Customization Guide 41
PalmSource Confidential

Editing the Bitmaps
Before you begin you should be aware of how the control bar
bitmaps are paired up. The reference bitmaps are located in
Platform/DAL/Common/SampleDevResources/Rsc/bitmaps
directory.

Each control bar bitmap works as a set, with one black bitmap and
one non-black (grey or blue). The non-black bitmap is the “selected
mode” version and is used to show a change in color when a button
is selected. The following example shows how the two images are
used together. The top image, Bitmap_19025QX-8.bmp, is the
default bitmap. The bottom image, Bitmap_19125QX-8.bmp, is
the bitmap used when a button is selected. The coordinates of the
button are used to determine which section of the selected bitmap to
display over top of the default bitmap so that only the button
changes color when selected.

Figure 5.1 Default and Selected Control Bar

The other pairing of bitmaps is has to do with the trigger. If you
intend to provide a collapsible input area, you must use bitmaps
with the trigger. However, because there are scenarios where the
input area must remain collapsed, and the control bar is the only
thing displayed across the bottom of the screen, you need to have
the control bar without the trigger available. Because of this you will
not only need to edit the default/selected bitmaps, you will also
need to modify the set of bitmaps that contain the trigger. So, in
addition to the two example images above, you would also need to
modify the two bitmaps in Figure 5.2, Bitmap_19020QX-8.bmp
and Bitmap_19120QX-8.bmp.

Using the Control Bar
Customizing the Control Bar

42 DAL Customization Guide
PalmSource Confidential

Figure 5.2 Default and Selected with Trigger

Adding Buttons
The following steps guide you through the process of adding
buttons to the control bar. Note that these instructions use the
reference code in their descriptions. It is expected that you will have
a copy of the files in your own development environment.

1. Add the icon for the button to the appropriate bitmap files.

2. Define a new virtual character for the button. There are pre-
defined ranges assigned to each licensee. Search for your
range in the chars.h file located in Platform/Incs/
Core/Common. The new vchar should be look something
like this:

#define vchr<app/operation> <number in range>

If you want to give developers access to this vchar, you need
to expose this definition in a public header file. Otherwise
you can add it to a private header file.

3. Add the button coordinates and definition to the appropriate
InputArea XRD file.The reference XRD files are located in the
Platform/DAL/Common/SampleDevResources/Rsc
directory. There are several flavors of the InputArea XRD
files as follows:

– InputArea-1X.xrd. (Single Density Display)

– InputArea-2X.xrd (Double Density Display)

– InputArea-QX.xrd (QVGA Display)

Using the Control Bar
Customizing the Control Bar

DAL Customization Guide 43
PalmSource Confidential

– InputAreaAllDensities.xrd (Simulator use only. Single,
Double, and QVGA Display)

Open the InputArea file and locate the
<SILK_SCREEN_RESOURCE> for the control bars you will be
using. The COMMENT field will tell you which control bar the
block of definitions applies to. You must modify two control
bar definitions; one with a trigger and the matching one
without. These definitions define the coordinates for both the
default and the selected display area, so you only need to
account for the control bars with and without the trigger.
Add the following button definition before the end of the
block:

<SILK_SCREEN_BUTTON>
<BOUNDS>

<LEFT> left coordinate </LEFT>
<TOP> top coordinate </TOP>
<WIDTH> width </WIDTH>
<HEIGHT> height </HEIGHT>

</BOUNDS>
<KEY_CHAR> vchar code </KEY_CHAR>
<KEY_CODE> 0x0000 </KEY_CODE>
<KEY_MODIFIERS> 0x0008 </KEY_MODIFIERS>

</SILK_SCREEN_BUTTON>

where:

left coordinate = rounded down (left coordinate/resolution)

top coordinate = rounded down (top coordinate/resolution)

width = rounded up(width/resolution)

Using the Control Bar
Customizing the Control Bar

44 DAL Customization Guide
PalmSource Confidential

4. Finally, you must patch SysHandleEvent() to do a
SysUIAppSwitch() to the application associated with the
button. Refer to the Shared Library Design Guide for
information on writing a patch.

Removing Buttons
To remove a button from the control bar simply follow the
instructions above in reverse.

1. If you have installed a patch to SysHandleEvent() to do a
SysUIAppSwitch() to the application associated with the
button, remove the patch. Note: if you are removing one of
the buttons provided in the reference bitmaps, for instance
Bluetooth, this step is not necessary.

2. Remove the button coordinates and definition from the
appropriate InputArea XRD file.

3. Remove the virtual character definition for this button from
the appropriate header file.

4. Remove the icon from all appropriate control bar bitmap
files.

height = rounded up(height/resolution)

Note that the original coordinates (left,
right, width, and height) must be
translated so that they are using a width of
160, even if you are using a higher
resolution screen. The number to use for
resolution in the above formulas are as
follows:
• 1 for 1X
• 1.5 for QVGA
• 2.0 HVGA

vchar code New virtual character code

<KEY_CODE> Leave as is. This field is currently unused.

<KEY_MODIFIERS> Must be 0x0008

DAL Customization Guide 45
PalmSource Confidential

6
Replacing System
Fonts
This chapter describes how to replace the Palm OS® system fonts
with your own fonts. There are eight Palm OS system fonts, as listed
in Table 6.1. The font IDs shown in Table 6.1 are used to access these
fonts. (A font ID is an index into the system’s font list.)

Table 6.1 Palm OS built-in fonts

Index Font ID Description

0 stdFont A small standard font used to
display user input. This font is small
to display as much text as possible.

1 boldFont Same size as stdFont but bold for
easier reading. Used for text labels
in the user interface.

2 largeFont A larger font provided as an
alternative for users who find the
standard font too small to read. This
font is used as the default on single-
density Japanese systems.

3 symbolFont Contains many special characters
such as arrows, Graffiti 2® Shift
Indicators, and so on.

4 symbol11Font Contains the check boxes, the large
left arrow, and the large right
arrow.

Replacing System Fonts

46 DAL Customization Guide
PalmSource Confidential

The fonts that Palm OS uses by default are included in two different
places. The System.prc file contains the symbol fonts
(symbolFont, symbol11Font, symbol7Font, and ledFont).
The locale module provides the rest of the fonts (text fonts, or fonts
used for text).

You can replace the system fonts with your own fonts in one of the
following ways:

• Create a font database and include it in the ROM. If this
database exists, the fonts it contains override any fonts
already installed. See “Creating a Font Database” on page 47.

• Replace the entire locale module in the ROM as described in
“Replacing Fonts in the Locale Module” on page 48.

The first method of replacing system fonts is recommended in these
instances:

• You want to replace only the symbol fonts.

• You want to replace the text fonts in a ROM that uses the
Palm Latin character encoding.

If the ROM uses the Palm Shift JIS or any other Asian encoding, it is
better to replace the entire locale module if you want to replace the
fonts used for text. Replacing the locale module is less error prone in
this instance because of the number of resources involved. It also
saves memory because fonts for double-byte character sets are quite
large.

5 symbol7Font Contains the up and down arrows
used for the repeating button scroll
arrows and the dimmed version of
the same arrows.

6 ledFont Contains the numbers 0 through 9,
–, ., and the comma (,). Used by the
Calculator application for its
numeric display.

7 largeBoldFont Same size as largeFont but bold.

Table 6.1 Palm OS built-in fonts (continued)

Index Font ID Description

Replacing System Fonts
Creating a Font Database

DAL Customization Guide 47
PalmSource Confidential

Note that creating a font database is only supported in Palm OS 5
release 5.1 or later. If you are using an earlier version of the OS, you
must replace the system fonts by replacing the locale module.

Creating a Font Database
To override the system fonts using a font database, do the following:

1. Create the resources for the fonts you want to replace. See
“Creating Font Resources” on page 59.
You can replace all of the system fonts or a subset of them.

The resources you create must have the same resource type
and resource ID as the ones you are replacing. Palm Latin
ROMs use the font resource types and IDs listed in Table 6.2.
ROMs compiled for ARM processors use the ARM resource
type. Palm Shift JIS ROMs use the same font resources for the
four symbol fonts but have different resources for the text
fonts.

2. Compile these font resources into a PRC database with the
type 'fnts' and the creator 'psys' for the four standard
fonts.

3. Include the database in the ROM that you build.

Table 6.2 Palm Latin built-in fonts

Font ID ARM Resource
Type

Resource ID

stdFont 'afnx' 32000

boldFont 'afnx' 32001

largeFont 'afnx' 32002

symbolFont 'afnx' 10000

symbol11Font 'afnx' 10001

symbol7Font 'afnx' 10002

ledFont 'afnx' 10003

largeBoldFont 'afnx' 32003

Replacing System Fonts
Replacing Fonts in the Locale Module

48 DAL Customization Guide
PalmSource Confidential

When Palm OS initializes, it loads the locale module and then it
looks for a database with type 'fnts' and creator 'psys'. If that
database exists, it uses any fonts in that database in place of the
default system fonts.

Replacing Fonts in the Locale Module
PalmSource provides one locale module for each supported
character encoding, and each ROM uses only one locale module.
The charEncodingPalmXXX values are defined in PalmLocale.h,
which is distributed with the standard headers. The locale modules
associated with these encoding values include
ShiftJISLocModule.prc (Japanese), LatinLocModule.prc
(Latin), and GBLocModule.prc (Simplified Chinese).

To replace the fonts in the locale module, do the following:

1. Decompile the locale module into an XRD file using the
GenerateXRD tool.

2. Edit the font resources in the file.
3. Recompile the locale module into a PRC file using PalmRC.
4. Build the ROM. The locale module PRC file should already

be a part of the ROM project.
The next two sections show example commands for decompiling
and recompiling the locale module PRC. You can find more
information about these tools in the documents Building Palm OS
Application Interfaces and Localization Guide, both of which are
included in the PDK.

GenerateXRD
Use the GenerateXRD tool to decompile the locale module into an
XRD source file. Normally this tool is used to extract only user
interface resources. When editing a PRC file, you must use extra
options so that all resources and PRC file attributes are preserved
during the editing process. For example:

GenerateXRD ShiftJISLocModule.prc –o ShiftJISLocModule.xrd –d
–s -target 4.0J

Replacing System Fonts
Replacing Fonts in the Locale Module

DAL Customization Guide 49
PalmSource Confidential

This command is composed of the following elements:

• The option ShiftJISLocModule.prc specifies the input
file to be decompiled.

• The option -o ShiftJISLocModule.xrd specifies that the
output file is ShiftJISLocModule.xrd.

• The option -d specifies that the PRC database header
attributes should be output to the XRD file.

• The option -s specifies that “segment” resources such as
code and overlay resources should be output to the XRD file.

• The option -target 4.0J tells the tool how to correctly
convert from the Shift-JIS character encoding into UTF-8
(Unicode), which is the character encoding used for XRD
files.

After you have generated the XRD file, edit it (using a UTF-8
compatible text editor) to include your hierarchical fonts as
described in “Creating a Hierarchical Font.”

PalmRC
After you are finished editing the XRD file, compile it back into a
PRC file using the PalmRC tool. For example:

PalmRC ShiftJISLocModule.xrd –o ShiftJISLocModule.prc –p ARM
-target 4.0J

This command is composed of the following elements:

• The option ShiftJISLocModule.xrd specifies the input
file to be compiled.

• The option -o ShiftJISLocModule.prc specifies that
the output file is ShiftJISLocModule.prc.

• The option -p ARM specifies that resources should be
compiled as ARM format.

• The option -target 4.0J preserves the resource text
encoding for the Japanese resources.

Once you have the PRC file you are ready to build the ROM.

Replacing System Fonts
Creating a Hierarchical Font

50 DAL Customization Guide
PalmSource Confidential

Creating a Hierarchical Font
Hierarchical fonts are fonts used to support double-byte character
encodings such as those used for the Japanese, Chinese, or Korean
alphabets. A hierarchical font is composed of the following
resources (see Figure 6.1):

• Subfonts, which are the same font resources that are used for
fonts in single-byte character encodings. A subfont defines at
most 256 glyphs for a double-byte character encoding (which
by definition have well over 256 characters). A hierarchical
font contains as many subfonts as are required to provide all
of the necessary glyphs for the encoding.

• One font map resource that tells Palm OS which subfonts to
use for which character codes

The font index resource, which is used to build the system’s
internal array of font pointers, is also integral in the workings of a
hierarchical font. The font map uses the list built from the font index
resource when identifying subfonts.

Figure 6.1 Hierarchical font

The rest of this section describes each of these three resource types
in more detail and then gives an example of how Palm OS uses
these resources to determine how to draw characters on the screen.

Subfonts
A subfont defines a subset of the glyphs for a double-byte character
encoding. A subfont contains either the set of single-byte characters
supported by the character encoding, or all of the double-byte

Font Map Font IndexSubfonts

Font Map
 Table

Subfont
list

Replacing System Fonts
Creating a Hierarchical Font

DAL Customization Guide 51
PalmSource Confidential

glyphs that have the same high byte value. A subfont may be either
a standard font resource (which supports only single-density
displays) or an extended font resource (which supports any mix of
single, 1.5X, or double-density data). Note however that each font
must contain single density data, for compatibility with applications
that draw text into single density offscreen bitmaps. These resources
are the same as those used for single-byte fonts. See “Creating Font
Resources” on page 59 for more information about these resources
and how to create them.

You can mix and match standard fonts and extended fonts within a
hierarchical font. Because extended fonts with multiple densities
can be much larger than standard fonts, you might find it
advantageous to use a standard font resource for infrequently used
subsets of characters and use extended font resources for the
frequently used characters. On high-density displays, Palm OS
pixel-doubles the low-density glyphs if the double-density glyphs
are not available.

When you create a resource to be used as a subfont, ensure the
following:

• The font type element should have the value 0x9400 for a
standard font resource or 0x9600 for an extended font
resource.

• Each subfont must be as tall or taller than the height
indicated by the font map metrics that are specified in the
font map’s header (see “Font Map Resources” on page 53).
The height is defined as the ascent plus the descent.

• The Palm OS blitter does not attempt to align the baselines of
subfonts, so it is best if all subfonts use the same value for the
ascent.

The Font Index Resource
The font index resource identifies all of the fonts available to the
system. The font index is a resource of type 'afti' on ARM with
the resource ID 32000. Palm OS uses the font index to build its
internal list of system fonts and subfonts. Listing 6.1 shows the XML
definition of a font index resource.

Replacing System Fonts
Creating a Hierarchical Font

52 DAL Customization Guide
PalmSource Confidential

Listing 6.1 Font index resource

<FONT_INDEX_RESOURCE RESOURCE_ID="32000" COMMENT="ShiftJIS
Font Resources Index">

<FONT_INDEX_ITEMS>

<FONT_INDEX_ITEM>
<FONT_RES_TYPE> 'aftm' </FONT_RES_TYPE>
<FONT_RES_ID> 32000 </FONT_RES_ID>

</FONT_INDEX_ITEM>
<FONT_INDEX_ITEM>

<FONT_RES_TYPE> 'aftm' </FONT_RES_TYPE>
<FONT_RES_ID> 32001 </FONT_RES_ID>

</FONT_INDEX_ITEM>

<FONT_INDEX_ITEM>
<FONT_RES_TYPE> 'aftm' </FONT_RES_TYPE>
<FONT_RES_ID> 32002 </FONT_RES_ID>

</FONT_INDEX_ITEM>

<FONT_INDEX_ITEM>
<FONT_RES_TYPE> 'afnx' </FONT_RES_TYPE>
<FONT_RES_ID> 10000 </FONT_RES_ID>

</FONT_INDEX_ITEM>

<FONT_INDEX_ITEM>
<FONT_RES_TYPE> 'afnx' </FONT_RES_TYPE>
<FONT_RES_ID> 10001 </FONT_RES_ID>

</FONT_INDEX_ITEM>

<FONT_INDEX_ITEM>
<FONT_RES_TYPE> 'afnx' </FONT_RES_TYPE>
<FONT_RES_ID> 10002 </FONT_RES_ID>

</FONT_INDEX_ITEM>

<FONT_INDEX_ITEM>
<FONT_RES_TYPE> 'afnx' </FONT_RES_TYPE>
<FONT_RES_ID> 10003 </FONT_RES_ID>

</FONT_INDEX_ITEM>

<FONT_INDEX_ITEM>
<FONT_RES_TYPE> 'aftm' </FONT_RES_TYPE>
<FONT_RES_ID> 32003 </FONT_RES_ID>

</FONT_INDEX_ITEM>

</FONT_INDEX_ITEMS>

Replacing System Fonts
Creating a Hierarchical Font

DAL Customization Guide 53
PalmSource Confidential

<FONT_INDEX_EXT_ITEMS>
<FONT_RES_ID> 32000 </FONT_RES_ID>
<FONT_RES_ID> 32001 </FONT_RES_ID>
...

</FONT_INDEX_EXT_ITEMS>

</FONT_INDEX_RESOURCE>

The font index has two parts:

1. A System Font list (FONT_INDEX_ITEMS), which lists the
resource types and IDs used for the default fonts. The default
fonts are listed in Table 6.1 on page 45.
You must provide a list with eight elements for the system
fonts. The system fonts are listed in Table 6.1 on page 45. For
the symbol fonts, use the resource types and IDs shown in
Listing 6.1.

For the four standard fonts, list the resource type and ID for
the font map resource. You do not have to provide four
different fonts, but you still should have four different
entries. (For example, you might decide to have largeFont
and largeBoldFont use the same font map.)

2. A Subfonts list (FONT_INDEX_EXT_ITEMS), which lists the
resource IDs of the fonts used as subfonts within all
hierarchical fonts in the system.
The font map resource uses the index into the list to identify
the subfonts that it uses.

If there are no hierarchical fonts installed in the system, the
subfonts list is empty.

Font Map Resources
A font map is a resource of type 'aftm' on ARM that maps the
character codes within a character encoding to the subfonts that
contain the glyphs for those character codes. Listing 6.2 shows the
XML definition of the font map resource.

Replacing System Fonts
Creating a Hierarchical Font

54 DAL Customization Guide
PalmSource Confidential

Listing 6.2 Font map resource

<FONT_MAP_RESOURCE RESOURCE_ID="32000">

<FONT_MAP_FONT_TYPE> 0xC000 </FONT_MAP_FONT_TYPE>
<FONT_MAP_FIRST_CHAR> 0x0000 </FONT_MAP_FIRST_CHAR>
<FONT_MAP_LAST_CHAR> 0xFFFF </FONT_MAP_LAST_CHAR>
<FONT_MAP_MAX_WIDTH> 0x000B </FONT_MAP_MAX_WIDTH>
<FONT_MAP_KERN_MAX> 0x0000 </FONT_MAP_KERN_MAX>
<FONT_MAP_N_DESCENT> 0x0000 </FONT_MAP_N_DESCENT>
<FONT_MAP_F_RECT_WIDTH> 0x000B </FONT_MAP_F_RECT_WIDTH>
<FONT_MAP_F_RECT_HEIGHT> 0x000B </FONT_MAP_F_RECT_HEIGHT>
<FONT_MAP_OWT_LOC> 0x0000 </FONT_MAP_OWT_LOC>
<FONT_MAP_ASCENT> 0x0009 </FONT_MAP_ASCENT>
<FONT_MAP_DESCENT> 0x0002 </FONT_MAP_DESCENT>
<FONT_MAP_LEADING> 0x0000 </FONT_MAP_LEADING>
<FONT_MAP_ROW_WORDS> 0x0000 </FONT_MAP_ROW_WORDS>

<FONT_MAP_TABLE>

<FONT_MAP_ENTRY>
<FONT_MAP_ENTRY_FLAGS> 0x00 </FONT_MAP_ENTRY_FLAGS>
<FONT_MAP_ENTRY_STATE> 0x01 </FONT_MAP_ENTRY_STATE>
<FONT_MAP_ENTRY_VALUE> 0x00 </FONT_MAP_ENTRY_VALUE>

</FONT_MAP_ENTRY>

<FONT_MAP_ENTRY>
<FONT_MAP_ENTRY_FLAGS> 0x00 </FONT_MAP_ENTRY_FLAGS>
<FONT_MAP_ENTRY_STATE> 0x01 </FONT_MAP_ENTRY_STATE>
<FONT_MAP_ENTRY_VALUE> 0x00 </FONT_MAP_ENTRY_VALUE>

</FONT_MAP_ENTRY>

... etc. to make exactly 256 entries

</FONT_MAP_TABLE>

</FONT_MAP_RESOURCE>

There are two main parts to a font map resource: a header, which
provides metrics for the subfonts, and a font map table, which maps
the character codes to the subfonts. Table 6.3 describes the elements
that comprise the font map’s header.

Replacing System Fonts
Creating a Hierarchical Font

DAL Customization Guide 55
PalmSource Confidential

Table 6.3 Font map header elements

Element Description

FONT_MAP_FONT_TYPE A mask providing the general
characteristics of the font.
When creating a font map, use
the value 0xC000.

FONT_MAP_FIRST_CHAR This value is not used and must
be set to 0.

FONT_MAP_LAST_CHAR This value is not used and must
be set to 0xFFFF.

FONT_MAP_MAX_WIDTH The maximum width in pixels
of any glyph. In Palm OS, there
is currently no difference
between this element and
FONT_MAP_F_RECT_WIDTH.

FONT_MAP_KERN_MAX This value is not currently used
and must be set to 0.

FONT_MAP_N_DESCENT This value is not currently used
and must be set to 0.

FONT_MAP_F_RECT_WIDTH A metric of the font image. In
Palm OS, this metric is
equivalent to the maximum
width in pixels of any glyph in
the font.

FONT_MAP_F_RECT_HEIGHT The maximum height of the
glyphs in this font. This value is
FONT_MAP_ASCENT plus
FONT_MAP_DESCENT.

FONT_MAP_OWT_LOC This value is not used and must
be set to 0.

FONT_MAP_ASCENT The distance in pixels from the
top of the font rectangle to its
baseline.

Replacing System Fonts
Creating a Hierarchical Font

56 DAL Customization Guide
PalmSource Confidential

The FONT_MAP_TABLE element is the table that maps character
codes to subfonts. This table has 256 entries of type
FONT_MAP_ENTRY. Each FONT_MAP_ENTRY contains the elements
listed in Table 6.4.

FONT_MAP_DESCENT The distance in pixels from the
baseline to the bottom of the
font rectangle.

FONT_MAP_LEADING The font’s leading, which is the
vertical space between lines of
text, in pixels. This field is
unused in Palm OS and must
be set to 0. If your font requires
a leading value, add blank
space to the bottom or top of
each of your glyphs.

FONT_MAP_ROW_WORDS This value is not used and must
be set to 0.

Table 6.3 Font map header elements (continued)

Element Description

Table 6.4 Font map table entry elements

Element Description

FONT_MAP_ENTRY_FLAGS Not used.

FONT_MAP_ENTRY_STATE One of the following:

fntStateIsChar (1) — The
current index is a single-byte
character, and it is used to
determine which glyph in the
specified subfont is used for this
character.

Replacing System Fonts
Creating a Hierarchical Font

DAL Customization Guide 57
PalmSource Confidential

How a Hierarchical Font Works
Suppose an application contained the following code to write two
characters to the display:

fntStateNextIsChar (2) — The
current index is the first byte of a
double-byte character. This means
that the next byte is used to
determine which glyph in the
specified subfont is used for the
character.

FONT_MAP_ENTRY_VALUE The subfont that contains the
glyphs for the character or the
characters that begin with this byte.
The subfont is identified by its
index into the Subfonts list in the
font index resource. For more
information, see “The Font Index
Resource” on page 51.

This value is an absolute index.
Suppose you define the four
system fonts and for each of them,
you use 45 separate font resources.
If you list all of the subfonts in
order of use, stdFont uses
subfonts 0 through 44, boldFont
uses subfonts 45 through 89,
largeFont uses subfonts 90
through 134, and so on.

Also note that subfonts may be
reused. For example, stdFont and
boldFont may use the same
subfonts for a certain set of
characters.

Table 6.4 Font map table entry elements (continued)

Element Description

Replacing System Fonts
Creating a Hierarchical Font

58 DAL Customization Guide
PalmSource Confidential

FntSetFont(stdFont); // set the font to be used
WinDrawChar(0x28, 50, 50);
WinDrawChar(0x806A, 50, 60);

To locate the glyphs necessary to draw these characters to the
screen, Palm OS does the following (see Figure 6.2):

Figure 6.2 Hierarchical font example

1. It looks up stdFont (font ID 0) in the array built from the
font index resource’s System Fonts list to determine which
resource is used as the standard font.
As shown in Figure 6.2, the standard font is a font map with
the ID fontMap0.

Font Map
fontMap0

.

.

.

0 fntStateNextIsChar 1

Font Index

0 'fntm' fontMap0
1 'fntm' fontMap1
 .
 .
 .

0 fontRscID0
1 fontExtRscID0
2 fontRscID2
 .
 .
 .

Font fntRscID0

Extended Font
 fntExtRscID0

Font
image
(low
density)

Bitmap
location
table

Offset
/width
table

Font
image
(double
density)

header

Font
image
(low
density)

Bitmap
location
table

Offset
/width
table

header
header

0 fntStateIsChar 0

Replacing System Fonts
Creating Font Resources

DAL Customization Guide 59
PalmSource Confidential

2. For the first character, Palm OS uses 0x28 as the index into
the font map. It learns that 0x28 is a single-byte character (its
state is fntStateIsChar) and its glyph is in Subfont 0.

3. Palm OS finds the pointer to Subfont 0 in the internal array of
subfont pointers that it built from the font index resource at
boot time.

4. It uses 0x28 as the character to draw with this subfont.
5. Next, Palm OS needs the glyph for character 0x806A. It uses

the first byte, 0x80, as the index into the font map. This entry
has the state fntStateNextIsChar and the subfont value
1. This means that Palm OS should use the next byte (0x6A)
as the character to draw with this subfont.

6. Palm OS finds the pointer to Subfont 1 in the internal array of
subfont pointers. This subfont is used to draw all characters
that begin with 0x80.

7. Because subfont 1 is a pointer to an extended font, the current
drawing state's density determines which glyph bitmap is
used to draw the character.

Creating Font Resources
This section describes how to create standard font and extended
font resources. You need this information both for building a system
font database to replace the fonts in the Palm Latin character
encoding and for creating a hierarchical font for the Palm Shift JIS
character encoding within a locale module.

For information on including font resources in a font database, see
“Creating a Font Database” on page 47. For information on
including font resources in a hierarchical font, see “Creating a
Hierarchical Font” on page 50.

Standard Font Resources
A standard font resource defines the glyphs for a single-byte
character encoding (such as Palm Latin) or for up to 256 characters
with the same high byte value in a double-byte character encoding.
Standard font resources support a single screen density of 160 X 160
pixels. If a standard font is used on a double-density screen, it is
pixel-doubled so that it is the same size as when shown on the
single-density display.

Replacing System Fonts
Creating Font Resources

60 DAL Customization Guide
PalmSource Confidential

The standard font resource type is 'afnt' on ARM.

To create an ARM font resource, use the XML-based tools provided
in the PDK. (You can find more information on the XML-based tools
in the book Building PRC Interfaces.)

Listing 6.3 shows an XML definition of part of a symbol font
resource using the old-style font format, which only supports single
density. (Normally, font resources contain many more glyphs than
are shown here.) Table 6.5 describes its elements.

Listing 6.3 Standard font resource

<FONT_RESOURCE RESOURCE_ID="10000">
<FONT_TYPE> 0x9000 </FONT_TYPE>
<FONT_ASCENT> 9 </FONT_ASCENT>
<FONT_DESCENT> 1 </FONT_DESCENT>
<FONT_GLYPHS>

<FONT_GLYPH>
<FONT_GLYPH_CODE> 0x0003 </FONT_GLYPH_CODE>
<FONT_GLYPH_IMAGE>

"....##....."
"...###....."
"..######.#."
".#######.#."
"########.#."
"########.#."
".#######.#."
"..######.#."
"...###....."
"....##....."

</FONT_GLYPH_IMAGE>
</FONT_GLYPH>
<FONT_GLYPH>

<FONT_GLYPH_CODE> 0x0004 </FONT_GLYPH_CODE>
<FONT_GLYPH_IMAGE>

"....##...."
"....###..."
"#.######.."
"#.#######."
"#.########"
"#.########"
"#.#######."
"#.######.."
"....###..."
"....##...."

</FONT_GLYPH_IMAGE>

Replacing System Fonts
Creating Font Resources

DAL Customization Guide 61
PalmSource Confidential

</FONT_GLYPH>
</FONT_GLYPHS>
<FONT_MISSING_GLYPH>

<FONT_GLYPH_IMAGE>
"....."
"#####"
"#...#"
"#...#"
"#...#"
"#...#"
"#...#"
"#...#"
"#####"
"....."

</FONT_GLYPH_IMAGE>
</FONT_MISSING_GLYPH>

</FONT_RESOURCE>

Table 6.5 Standard font elements

Element Description

FONT_TYPE Indicates the font resource format and
usage; it should be set to 0x9000 for
Palm Latin fonts. For subfonts, the
value should be 0x9400.

FONT_ASCENT The distance in pixels from the top of
the font rectangle to its baseline.

For subfonts, use the same value as
you used in the font map.

FONT_DESCENT The distance in pixels from the
baseline to the bottom of the font
rectangle.

For subfonts, use a value greater than
or equal to the value provided in the
font map.

Replacing System Fonts
Creating Font Resources

62 DAL Customization Guide
PalmSource Confidential

FONT_GLYPHS A list of one or more FONT_GLYPH
elements, one for each glyph in the
font. There is a maximum of 256
glyphs in a font. A font does not have
to define all 256 glyphs.

FONT_GLYPH Maps a character code (or part of a
character code) with its glyph. Each
FONT_GLYPH element contains a
FONT_GLYPH_CODE element followed
by a FONT_GLYPH_IMAGE element.

FONT_GLYPH_CODE The character code for the glyph. For
double-byte subfonts, this is the low
byte of the double-byte character.
FONT_GLYPH elements must be
specified in increasing order of
FONT_GLYPH_CODE.

FONT_GLYPH_IMAGE The bitmap image for the glyph. Each
row of the bitmap is specified as a
quoted string. The number of rows
defined for each glyph must be equal
to the font height (the ascent plus the
descent).

In each row of the bitmap, a character
in the quoted string represents one
pixel. The “off” pixels are represented
by '.' characters; the “on” pixels are
represented by '#' characters. The
width of the glyph is defined by the
number of characters in the row. Each
row in the glyph must have the same
width.

Table 6.5 Standard font elements (continued)

Element Description

Replacing System Fonts
Creating Font Resources

DAL Customization Guide 63
PalmSource Confidential

Extended Font Resources
Palm OS 5 supports extended font resources ('afnx' on ARM) for
each of the default system fonts. An extended font resource defines
at most 256 characters, but it contains a separate set of glyphs for
each possible screen density. Currently, the only supported densities
are single (160x160), 1.5X or "QVGA" (240x320), and double
(320x320). When Palm OS draws text to the screen, it first
determines the screen density and then uses the glyphs for that
density.

To create an ARM extended font resource, use the XML-based tools
provided with the PDK. (You can find more information on the
XML-based tools in the book Building PRC Interfaces.)

Listing 6.4 on page 64 shows the XML definition of a small extended
font resource. (Normally, extended font resources contain many
more glyphs than are shown here.) This resource is similar to the
standard font resource, but has these notable differences:

• The FONT_TYPE element should be 0x9200 for a Palm Latin
font and 0x9600 for a Palm Shift JIS subfont.

• The ascent and descent are single-density metrics.

• There is a separate set of glyphs (FONT_GLYPHS elements)
for each supported screen density. The
FONT_EXTENDED_ITEM defines the glyphs for one density.

FONT_MISSING_GLYPH Defines the glyph bitmap image that
is used for any undefined characters
in the font. The
FONT_MISSING_GLYPH has one
element, which is a
FONT_GLYPH_IMAGE element, with
the same format as in FONT_GLYPH
elements described above.

Note that each subfont within a
hierarchical font still ends with a
missing glyph image.

Table 6.5 Standard font elements (continued)

Element Description

Replacing System Fonts
Creating Font Resources

64 DAL Customization Guide
PalmSource Confidential

This element consists of a FONT_DENSITY element followed
by a FONT_GLYPHS element. The FONT_DENSITY may be 72
(single density), 108 (1.5X or QVGA density), or 144 (double
density). These numbers roughly correspond to the density's
dots-per-inch.

The font extended item elements must be defined in order of
increasing density. You must include the single density
glyphs, and then optionally either the 1.5X or the 2X.

The set of glyphs must be identical in all densities of the font.
For example, if a glyph for the letter 'A' is defined in the
normal density font, it must also be defined in the double-
density font, and vice versa.

The normalized dimensions of each glyph bitmaps must be
identical in all densities of the font. For example, if the glyph
for the letter 'A' has width 10 in the normal density font, it
must have the width 20 in the double-density font.

Note that because the double density font has metrics that
are exactly double those of the single-density font, the
double-density font always has even values for its font
metrics. If you design the double-density glyphs before the
single-density glyphs, be sure to use even values for the
width and height.

Listing 6.4 Extended font resource

<FONT_EXTENDED_RESOURCE RESOURCE_ID="10003">
<FONT_TYPE> 0x9200 </FONT_TYPE>
<FONT_ASCENT> 8 </FONT_ASCENT>
<FONT_DESCENT> 0 </FONT_DESCENT>
<FONT_EXTENDED_ITEMS>

<FONT_EXTENDED_ITEM>
<FONT_DENSITY> 72 </FONT_DENSITY>
<FONT_GLYPHS>

<FONT_GLYPH>
<FONT_GLYPH_CODE> 0x0001 </FONT_GLYPH_CODE>
<FONT_GLYPH_IMAGE>

"..........."
".....#....."
"....###...."
"...#####..."
"..#######.."
".#########."

Replacing System Fonts
Creating Font Resources

DAL Customization Guide 65
PalmSource Confidential

"###########"
"..........."

</FONT_GLYPH_IMAGE>
</FONT_GLYPH>
<FONT_GLYPH>

<FONT_GLYPH_CODE> 0x0002 </FONT_GLYPH_CODE>
<FONT_GLYPH_IMAGE>

"..........."
"###########"
".#########."
"..#######.."
"...#####..."
"....###...."
".....#....."
"..........."

</FONT_GLYPH_IMAGE>
</FONT_GLYPH>

</FONT_GLYPHS>
<FONT_MISSING_GLYPH>

<FONT_GLYPH_IMAGE>
"....."
"#####"
"#...#"
"#...#"
"#...#"
"#...#"
"#####"
"....."

</FONT_GLYPH_IMAGE>
</FONT_MISSING_GLYPH>

</FONT_EXTENDED_ITEM>
<FONT_EXTENDED_ITEM>

<FONT_DENSITY> 144 </FONT_DENSITY>
<FONT_GLYPHS>

<FONT_GLYPH>
<FONT_GLYPH_CODE> 0x0001 </FONT_GLYPH_CODE>
<FONT_GLYPH_IMAGE>

"......................"
"......................"
"......................"
"..........#..........."
".........###.........."
"........#####........."
".......#######........"
"......#########......."
".....###########......"
"....#############....."
"...###############...."

Replacing System Fonts
Creating Font Resources

66 DAL Customization Guide
PalmSource Confidential

"..#################..."
".###################.."
"#####################."
"......................"
"......................"

</FONT_GLYPH_IMAGE>
</FONT_GLYPH>
<FONT_GLYPH>

<FONT_GLYPH_CODE> 0x0002 </FONT_GLYPH_CODE>
<FONT_GLYPH_IMAGE>

"......................"
"......................"
"#####################."
".###################.."
"..#################..."
"...###############...."
"....#############....."
".....###########......"
"......#########......."
".......#######........"
"........#####........."
".........###.........."
"..........#..........."
"......................"
"......................"
"......................"

</FONT_GLYPH_IMAGE>
</FONT_GLYPH>

</FONT_GLYPHS>
<FONT_MISSING_GLYPH>

<FONT_GLYPH_IMAGE>
".........."
".........."
"##########"
"##########"
"##......##"
"##......##"
"##......##"
"##......##"
"##......##"
"##......##"
"##......##"
"##......##"
"##########"
"##########"
".........."
".........."

</FONT_GLYPH_IMAGE>

Replacing System Fonts
Creating Font Resources

DAL Customization Guide 67
PalmSource Confidential

</FONT_MISSING_GLYPH>
</FONT_EXTENDED_ITEM>

</FONT_EXTENDED_ITEMS>
</FONT_EXTENDED_RESOURCE>

Replacing System Fonts
Creating Font Resources

68 DAL Customization Guide
PalmSource Confidential

DAL Customization Guide 69
PalmSource Confidential

Index

B
boldFont 45, 47

D
DAL

BigDAL 5
Globals 19
Small DAL 3
SmallDAL 4

Dynamic Heap 9, ??–17, 17–??, 24, 29
dynamic input area 35

G
GenerateXRD 48
Globals 19

Blitter 32
DAL 13
HAL 20
Identifying Hardware Features 30
Low Memory Globals 13, 16
Screen Manager 33
Setting from Card Header 28

H
HAL 3

Globals 20

I
input area 35

K
kernel 19

L
largeBoldFont 46, 47
largeFont 45, 47
ledFont 46, 47

M
Memory 12

Cache 11
Configuring 14, 15
Direct Mapped I/O Configuration 14

HwrPreRAMInit() 15
Initial Memory Map 12
New Page Tables 16
RAM 12
Refined Memory Map 13
Regions 9
Scaling Heap Space 11
Virtual Memory Map 11

MMU 11, 12, 13, 16

P
Page Tables 16

First-level 16
Second-level 16

PalmRC 48

R
ROM

Building 6
Installing into RAM 7
SmallROM 4

ROM Builder 6, 25

S
Scatterload files 3
stdFont 45, 47
Storage Heap 9, 12–17, 24, 29
symbol11Font 45, 47
symbol7Font 46, 47
symbolFont 45, 47

W
widebin 6

70 DAL Customization Guide
PalmSource Confidential

	Device Abstraction Layer (DAL) Customization Guide
	Table of Contents
	About This Document
	What this Guide Contains
	Related Documentation
	General Documents
	Technology-Specific Documents
	Tool-Specific Documents

	Additional Resources

	Development Process
	Tool Chain
	Modifying the DAL Source
	Scatterload files

	Building <source>.prc
	SmallDAL
	BigDAL
	Serial, USB, DMA, and SD Card Drivers

	Building a ROM
	Installing the ROM into RAM
	Debugging the ROM

	Configuring Memory
	Memory Regions
	Virtual Memory Layout
	Virtual Memory Map
	HwrPreRAMInit() Responsibilities

	Scaling Heap Space

	DAL Globals
	DAL Globals Data Structure
	HAL Globals
	Setting Globals from the Card Header
	Identifying Hardware Features

	Blitter Globals
	Screen Manager Globals

	Dynamic Input Area
	Input Area Resources
	Input Area Feature Flags

	Using the Control Bar
	Control Bar Resources
	Customizing the Control Bar
	Editing the Bitmaps
	Adding Buttons
	Removing Buttons

	Replacing System Fonts
	Creating a Font Database
	Replacing Fonts in the Locale Module
	GenerateXRD
	PalmRC

	Creating a Hierarchical Font
	Subfonts
	The Font Index Resource
	Font Map Resources
	How a Hierarchical Font Works

	Creating Font Resources
	Standard Font Resources
	Extended Font Resources

	Index
	B
	D
	G
	H
	I
	K
	L
	M
	P
	R
	S
	W

